¿Para dónde va la radiología en el contexto del beneficio del paciente en el 2023?
Resumen
En 2023, la radiología continúa avanzando hacia un enfoque centrado en el beneficio del paciente. Las innovaciones tecnológicas, como la inteligencia artificial y la imagenología avanzada, están mejorando la precisión diagnóstica y la personalización de los tratamientos. La integración de técnicas mínimamente invasivas y la colaboración interdisciplinaria también están reduciendo el tiempo de recuperación y mejorando los resultados clínicos. Este artículo explora cómo estos desarrollos están transformando la práctica radiológica y optimizando el cuidado del paciente, (1).
La tendencia de la radiología en el contexto del 2023 no tendrá muchos cambios significativos. Si bien es cierto que la tendencia en imágenes diagnosticasen la actualidad es el uso progresivo de la IA (Inteligencia Artificial), (2) en radiología, esta cada día toma más fuerza en el ámbito de la salud.
Es un campo que aún se encuentra en implementación.(3)
Citas
Soellner M, Koenigstorfer J. Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method. BMC Med Inform Decis Mak [Internet]. 2021 Dec 1 [cited 2023 Jun 7];21(1). Available from: doi.org/10.1186/s12911-021-01596-6
Jungmann F, Jorg. T, Hahn F, Pinto dos Santos D, Jungmann SM, Düber C, et al. Attitudes Toward Artificial Intelligence Among Radiologists, IT Specialists, and Industry. Acad Radiol [Internet]. 2020 Jun 1 [cited 2023 Jun 8];28(6):834–40.
Codari M, Melazzini L, Morozov SP, van Kuijk CC, Sconfienza LM, Sardanelli F. Impact of artificial intelligence on radiology: a Euro AIM survey among members of the European Society of Radiology. Insights Imaging [Internet]. 2019 Dec 1 [cited 2023 Jun 8];10(1).
Richardson ML, Garwood ER, Lee Y, Li MD, Lo HS, Nagaraju A, et al. Noninterpretive Uses of Artificial Intelligence in Radiology. Acad Radiol [Internet]. 2021 Sep 1 [cited 2023 Jun 8];28(9):1225–35. Available from: https://doi.org/10.1016/j.acra.2020.01.012
Carlos R, Marangoni AA, Westerink A, Santos A, Phillips-Hughes J, Macpherson G, et al. The global future of imaging. The Global Future of Imaging. 2019 Nov 9;1–24.
Jin D, Harrison AP, Zhang L, Yan K, Wang Y, Cai J, et al. Artificial intelligence in radiology. In: Artificial Intelligence in Medicine: Technical Basis and Clinical Applications [Internet]. Elsevier Applied Science; 2021 [cited 2023 Jun 8]. p. 265–89.
Itri JN. Patient-centered radiology. Radiographics [Internet]. 2015 Oct 1 [cited 2023 Jun 8];35(6):1835–48. Available from: doi.org/10.1148/rg.20151501108.
Zheng Q, Yang L, Zeng B, Li J, Guo K, Liang Y, et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: A systematic review and meta-analysis. EClinical Medicine [Internet]. 2021 Jan 1 [cited 2023 Jun 8];31.
Soellner M, Koenigstorfer J. Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method. BMC Med Inform Decis Mak [Internet]. 2021 Dec 1 [cited 2023 Jun 8];21(1).
Takata T, Nakabayashi S, Kondo H, Yamamoto M, Furui S, Shiraishi K, et al. Mixed Reality Visualization of Radiation Dose for Health Professionals and Patients in Interventional Radiology. J Med Syst [Internet]. 2021 Apr 1 [cited 2023 Jun 8];45(4).
Zhang Z, Genc Y, Wang D, Ahsen ME, Fan X. Effect of AI Explanations on Human Perceptions of Patient-Facing AI-Powered Healthcare Systems. J Med Syst [Internet]. 2021 Jun 1 [cited 2023 Jun 8];45(6). Available from: https://doi.org/10.1007/s10916-021-01743-6
Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology [Internet]. Canadian Association of Radiologists Journal. Canadian Medical Association; 2018 [cited 2023 Jun 8];69(2):120–35. Available from: https://doi.org/10.1016/j.carj.2018.02.002
Mettler FA, Mahesh M, Bhargavan-Chatfield M, Chambers CE, Elee JG, Frush DP, et al. Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006–2016. Radiology [Internet]. 2020 May 1 [cited 2023 Jun 8];295(2):418–27.
Cochon LR, Kapoor N, Carrodeguas E, Ip IK, Lacson R, Boland G, et al. Variation in follow-up imaging recommendations in radiology reports: Patient, modality, and radiologist predictors. Radiology [Internet]. 2019 [cited 2023 Jun 8];291(3):700–7.
Ng CKC. Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review. Children [Internet]. 2023 Mar 8 [cited 2023 Jun 8];10(3):525. Available from: https://doi.org/10.3390/ children10030525
Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM, Aziz A, et al. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE) [Internet]. European Radiology. Springer Science and Business Media Deutschland GmbH; 2022 [cited 2023 Jun 8];32(11):7998.
Fasterholdt I, Naghavi-Behzad M, Rasmussen BSB, Kjølhede T, Skjøth MM, Hildebrandt MG, et al. Value assessment of artificial intelligence in medical imaging: a scoping review. BMC Med Imaging [Internet]. 2022 Dec 1 [cited 2023 Jun 8];22(1).
Cox J, Graham Y. Radiology and patient communication: if not now, then when? [Internet]. European Radiology. Springer; 2020 [cited 2023 Jun 8];30(1):501–3.
Duong MT, Rauschecker AM, Rudie JD, Chen PH, Cook TS, Bryan RN, et al. Artificial intelligence for precision education in radiology [Internet]. British Journal of Radiology. British Institute of Radiology; 2019 [cited 2023 Jun 8];92(1103)
Schuur floor, Rezazade Mehrizi M, Ranschaert E. Training opportunities of artificial intelligence (AI) in radiology: a systematic review. imaging informatics and artificial intelligence [Internet]. 2021 Feb 15 [cited 2023 Jun 8];1–9.
Syed AB, Zoga AC. Artificial Intelligence in Radiology: Current Technology and Future Directions [Internet]. Seminars in Musculoskeletal Radiology. Thieme Medical Publishers, Inc.; 2018 [cited 2023 Jun 8];22(05):540–5.
Goisauf M, Cano Abadía M. Ethics of AI in Radiology: A Review of Ethical and Societal Implications [Internet]. Frontiers in Big Data. Frontiers Media S.A.; 2022 [cited 2023 Jun 8];5. Available from: doi: 10.3389/fdata.2022.850383
Pakdemirli E. Artificial intelligence in radiology: friend or foe? Where are we now and where are we heading? Acta Radiol Open [Internet]. 2019 Feb [cited 2023 Jun 8];8(2):205846011983022. Available from: DOI: 10.1177/2058460119830222
Liew C. The future of radiology augmented with Artificial Intelligence: A strategy for success [Internet]. European Journal of Radiology. Elsevier Ireland Ltd; 2018 [cited 2023 Jun 8];102:152–6. Available from: https://doi.org/10.1016/j.ejrad.2018.03.019
Geis JR, Brady AP, Wu CC, Spencer J, Ranschaert E, Jaremko JL, et al. Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. Canadian Association of Radiologists Journal [Internet]. 2019 Nov 1 [cited 2023 Jun 8];70(4):329–34.
Kahn CE. From images to actions: Opportunities for artificial intelligence in radiology [Internet]. Radiology. Radiological Society of North America Inc.; 2017 [cited 2023 Jun 8];285(3):719–20. Available from: https://doi.org/10.1148/radiol.2017171734
Olthof AW, van Ooijen PMA, Rezazade Mehrizi MH. Promises of artificial intelligence in neuroradiology: a systematic technographic review. Neuroradiology [Internet]. 2020;62(10):1265–78. Available from: http://dx.doi.org/10.1007/s00234-020-02424-w
Groot OQ, Bongers MER, Ogink PT, Senders JT, Karhade A V., Bramer JAM, et al. Does Artificial Intelligence Outperform Natural Intelligence in Interpreting Musculoskeletal Radiological Studies? A Systematic Review. Clin Orthop Relat Res [Internet]. 2020 Dec 1 [cited 2023 Jun 8];478(12):2751–64. Available from: DOI 10.1097/CORR.0000000000001360
Jalal S, Nicolaou S, Parker W. Artificial Intelligence, Radiology, and the Way Forward. Canadian Association of Radiologists Journal [Internet].2019 Feb1[cited 2023 Jun 8];70(1):10–2.
Wang H, Jia S, Li Z, Duan Y, Tao G, Zhao Z. A Comprehensive Review of Artificial Intelligence in Prevention and Treatment of COVID-19 Pandemic [Internet]. Frontiers in Genetics.FrontiersMediaS.A.;2022 [cited2023Jun 8];13.
Jang beIbeI, guo nIng, ge Yi, Zhang lu, ouDkerk matthIJs, XIe X. ImagIng patIents wIth stable chest paIn specIal feature: revIew artIcle Development and application of artificial intelligence in cardiac imaging [Internet]. 2020 [cited 2023 Jun 8];93(1113).
Adams SJ, Tang R, Babyn P. Patient Perspectives and Priorities Regarding Artificial Intelligence in Radiology: Opportunities for Patient-Centered Radiology. Journal of the American College of Radiology [Internet]. 2020 Aug 1 [cited 2023 Jun 8];17(8):1034–6.
Balki I, Amirabadi A, Levman J, Martel AL, Emersic Z, Meden B, et al. Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review [Internet]. Canadian Association of Radiologists Journal. Canadian Medical Association; 2019 [cited 2023 Jun 8];70(4):344–53.
Sadaghiani MS, Rowe SP, Sheikhbahaei S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. Ann Transl Med [Internet]. 2021 May [cited 2023 Jun 8];9(9):823–823. Available from: doi: 10.21037/atm-20-6162
Mazurowski MA. Artificial Intelligence May Cause a Significant Disruption to the Radiology Workforce. Journal of the American College of Radiology [Internet]. 2019 Aug 1 [cited 2023 Jun 8];16(8):1077–82. Available from: https://doi.org/10.1016/j.jacr.2019.01.026
Soellner M, Koenigstorfer J. Compliance with medical recommendations depending on the use of artifcial intelligence as a diagnostic method. BMC Med Inform Decis Mak. 2021 Aug 6;1–11.
Descargas
Publicado
Versiones
- 2025-11-20 (4)
- 2025-11-20 (3)
- 2025-08-12 (2)
- 2024-08-24 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Scientific and Eduaction Medical JournalAtribución – No comercial – Compartir igual: Esta licencia permite a otros distribuir, remezclar, retocar, y crear a partir de tu obra de modo no comercial, siempre y cuando te den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.
Attribution-NonCommercial-ShareAlike 4.0 International


