A propósito del COVID19, una revisión sistemática respecto al paradigma de la radiología y la inteligencia artificial
Keywords:
Radiology, Lung, Artificial Intelligence, Comparison, Pneumonia.Abstract
Artificial intelligence is a rapidly growing field that poses the possible solution to
multiple problems arising today in clinical practice, particularly in the area of radiology.
In principle, Artificial Intelligence (AI) can be understood as the ability of a computer
to imitate human cognitive capacity, it corresponds to a complex series of activities
including machine learning and processing algorithms which are based on predefined
knowledge parameters that can process large volumes of information imperceptible to
the human eye, opening a new era for the development of diagnostic imaging technology.
References
Xiong Z, Wang R, Bai H, Halsey K, Mei J, Li Y. Artificial Intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at Chest CT. Radiology. 2020;296(3)(3).
Q Z, L Y, B Z, J L, K G, Y L. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: A systematic review and meta-analysis. EClinicalMedicine. 2020;31.
Mei X, Lee H, Diao K, Huang M, Lin B, Liu C. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med. 2021;26(8).
Adly A, Adly A, Adly M. Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of COVID-19: scoping review. Journal of medical internet research. 2020; 22.
Hu Z, Ge Q, Li S, Jin L, Xiong M. Artificial intelligence forecasting of Covid-19 in China. arXiv. 2020.
Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for Covid-19. IEEE Reviews in Biomedical Engineering. 2020;14.
Neri E, Miele V, Coppola F, Grassi R. Use of CT and artificial intelligence in suspected or Covid-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology. Radiol Medica. 2020;125(5).
Fan L, Li D, Xue H, Zhang L, Liu Z, Zhang B. Progress and prospect on imaging diagnosis of Covid-19. Chinese J Acad Radiol. 2020;3(1).
D D, Z T, S W, H H, L G, Y L. The role of imaging in the detection and management of Covid-19: a review. IEEE Rev Biomed Eng. 2021;14.
Oliver C, Altemus M, Westerhof T, Cheriyan H, Cheng X, Dziubinski M. A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche. Lab Chip. 2021;19(7).
Hosny A, Parmar CQJSL, Aerts H. Artificial intelligence in radiology. Nature Publishing Group. 2018; 18.
Miotto R, Wang F, Wang S, Jiang X, Dudley J. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2017;19(6).
Tsehay Y, Lay N, Roth H, Wang X, Kwak J, Turkbey B. Convolutional neural network based deep-learning architecture for prostate cancer detection on multiparametric magnetic resonance images: medical imaging. 2017.
Syed A, Zoga A. Artificial intelligence in radiology: current technology and future directions. Thieme medical publishers, Inc. 2018;22.
Thrall J, Li X, Li Q, Cruz C,Do S, Dreyer K. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success.J Am Coll Radiol. 2018;15(3).
Thompson R, Valdes G, Fuller C, Carpenter C, Morin O, Aneja S. Artificial intelligence in radiation oncology: a specialty-wide disruptive transformation. Radiotherapy and Oncology. 2018;129.
Kobayashi Y, Ishibashi M, Kobayashi H. How will “democratization of artificial intelligence” change the future of radiologists. Japanese Journal of Radiology. 2019;37.
Dumić-Čule I, Orešković T, Brkljačić B, Tiljak M, Orešković S. The importance of introducing artificial intelligence to the medical curriculum–assessing practitioners’ perspectives. Croatian Medical Journal. 2020;61.
Mascarenhas V, Caetano A, Dantas P, Rego P. Advances in FAI Imaging: a focused review. Curr Rev MusculoskeletMed. 2020;13(5).
Rubin D. Artificial Intelligence in Imaging: the radiologist’s role. J am coll radiol. 2019;16(9).
Gampala S, Vankeshwaram V, Gadula S ¿Is artificial intelligence the new friend for radiologists? A review article. Cureus. 2020;12(10).
E.H. A-A. Genetic variations among SARS-CoV-2 strains isolated in China. Gene Reports. 2020; 21.
Bai YX, Xu YH, Wang X, Sun C, Guo Y, Qiu S. Advances in SARS-CoV-2: a systematic review. Rev Med Pharmacol Sci. 2020;14(17).
Chan J, Kwok K, Ma J, Wong Y. Radiology and Covid-19. Hong Kong Medical Journal. 2020;26.
Jacobi A, Chung M, Bernheim A, Eber C. Portable chest X-ray in coronavirus disease-19 (Covid-19): A pictorial review. Clinical Imaging. 2020;64.
Oterino et al. Pediatric chest x-ray in Covid-19 infection. Eur J Radiol. 2020.
Salameh J, Leeflang M, Hooft L, Islam N, McGrath T. Thoracic imaging tests for the diagnosis of Covid-19. Cochrane Database Syst Rev. 2020;9.
Lim M, Pranata R. Coronavirus disease 2019 (Covid-19) markedly increased mortality in patients with hip fracture-A systematic review and meta-analysis. J Clin Orthop trauma. 2020.
Xu X, Yu C, Qu J, Zhang L, Jiang S, Huang D. Imaging and clinical features of patients with 2019 novel Coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47(5).
Patel N. Pediatric Covid-19: systematic review of the literature. Am J Otolaryngol. 2020; 41(5).
Güneyli S, Atçeken Z, Doğan H, Altınmakas E, Atasoy K. Radiological approach to Covid-19 pneumonia with an emphasis on chest CT. Diagnostic and Interventional Radiology. 2020;26.
Ai T, Yang Z, Hou, Zhan C, Chen C, Lv W. Correlation of chest CT and RT-PCR testing for Coronavirus disease 2019 (Covid-19) in China: a report of 1014 Cases. Radiology. 2020;296(2).
Pan F, Ye T, Sun P, Gui S, Liang B, Li L. Time course of lung changes at chest CT during recovery from Coronavirus disease 2019 (Covid-19). Radiology. 2020; 295(3).
Vaishya R, Javaid M, Khan I, Haleem A. Artificial intelligence (AI) applications for Covid-19 pandemic. Diabetes metab syndr clin Res Rev. 2020;14(4).
Li Z, Zhong Z, Li Y, Zhang T, Gao L, Jin D. From community-acquired pneumonia to Covid-19: a deep learning–based method for quantitative analysis of Covid-19 on thick-section CT scans. Eur Radiol. 2020;30(12).
Ito R, Iwano S, Naganawa S. A review on the use of artificial intelligence for medical imaging of the lungs of patients with coronavirus disease 2019. Diagnostic and Interventional Radiology. 2020;26.
Nagpal P, Narayanasamy S, Vidholia A, Guo J, Shin K, Lee C. Imaging of Covid-19 pneumonia: patterns, pathogenesis, and advances. The british journal of radiology. 2020;93.
Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B. Using artificial intelligence to detect Covid-19 and community-acquired pneumonia based on pulmonary ct: evaluation of the diagnostic accuracy. Radiology. 2020;196(2).
Ying S, Zheng S, Li L, Zhang X, Zhang X, Huang Z. Deep learning enables accurate diagnosis of novel coronavirus (Covid-19) with CT images. medRxi. 2020.
Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y. Deep learning-based model for detecting 2019 novel Coronavirus pneumonia on high-resolution computed tomography. Sci Rep. 2020;10(1).
Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X. Development and evaluation of an artificial intelligence system for Covid-19 diagnosis. Nat Commun. 2020;11(1).
Mei X, Lee H, Diao K, Huang M, Lin B, Liu C. artificial intelligence–enabled rapid diagnosis of patients with Covid-19. Nat Med. 2020;2:8.
Ni Q, Sun Z, Qi L, Chen W, Yang Y, Wang L. A deep learning approach to characterize 2019 coronavirus disease (Covid-19) pneumonia in chest CT images. Eur Radiol. 2020;30(12).
P J, X J, W K, Y L, H L, F M. Artificial intelligence in gastric cancer: a systematic review. Journal of Cancer Research and Clinical Oncology. 2020;146.
Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X. Development and evaluation of an artificial intelligence system for Covid-19 diagnosis. Nat Commun. 2020;11(1).
Suri J, Agarwal S, Gupta S, Puvvula A, Biswas M, Saba L. A narrative review on characterization of acute respiratory distress syndrome in Covid-19-infected lungs using artificial intelligence. Comput Biol Med. 2020; 130.
Alsharif W, Qurashi A. Effectiveness of Covid-19 diagnosis and management tools: a review. Radiography. 2020; 21.
Brown N. A novel peer-to-peer contact tracking application for Covid-19 and future pandemics. Diabetes metab syndr Clin Res Rev. 2020; 14(5).
R V, M J, IH K, A H. Artificial intelligence (AI) applications for Covid-19 pandemic. diabetes metab syndr clin res rev. 2020; 14(4).
Suri J, Puvvula A, Biswas M, Majhail M, Saba L, Faa G. Covid-19 pathways for brain and heart injury in comorbidity patients: a role of medical imaging and artificial intelligence-based Covid- 19 severity classification: a review. Computers in Biology and Medicine. 2020; 124.
Jalaber C, Lapotre T, Morcet-Delattre T, Ribet F, Jouneau S, Lederlin M. Chest CT in Covid-19 pneumonia: a review of current knowledge. Diagnostic and interventional Imaging. 2020; 101. x
Downloads
Published
Versions
- 2025-11-09 (2)
- 2021-04-15 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 Scientific and Eduaction Medical Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribución – No comercial – Compartir igual: Esta licencia permite a otros distribuir, remezclar, retocar, y crear a partir de tu obra de modo no comercial, siempre y cuando te den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.
Attribution-NonCommercial-ShareAlike 4.0 International


