Revolución tecnológica en ortopedia, fisiatría y medicina del deporte más que una necesidad
Keywords:
Medical technology, additive manufacturing, robotics, biomaterials, nanotechnology.Abstract
Medical technology has undergone a major revolution in recent years, especially in areas
such as orthopedics, sports medicine and physiatry, which have benefited from these
technologies due to their increasing clinical use and the multidisciplinary integration
of other sciences that are applicable in the area of health. 3D printing, nanotechnology,
robotic surgery, portable monitoring technology, augmented reality and biomaterials
are some of the technologies of clinical applicability that have gained strength in
these medical specialties, however, they still face limitations to overcome such as the
cost of innovation and specialized resources that allow the implementation of these
technologies.
References
Pardo F, Bordini B, Castagnini F, Giardina F, Faldini C, Traina F. Are powder - technology - built stems safe? A midterm follow - up registry study. J Mater Sci Mater Med [Internet]. 2021;32(1):10.
Zarowin J, Warnick E, Mangan J, Nicholson K, Goyal DKC, Galetta MS, et al. Is wearable technology part of the future of orthopedic health care? Clin Spine Surg [Internet]. 2020;33(3):99–101.
Sun H, Lv L, Bai Y, Yang H, Zhou H, Li C, et al. Nanotechnology - enabled materials for hemostatic and anti - infection treatments in orthopedic surgery. Int J Nanomedicine [Internet]. 2018;13:8325–38.
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater [Internet]. 2022;16:249–70.
Hung S - S, Hsu AS - F , Ho T - H, Chi C - H, Yen P - L. A robotized handheld smart tool for orthopedic surgery. Int J Med Robot [Internet]. 2021;17(5):e2289.
Yin W, Chen M, Bai J, Xu Y, Wang M, Geng D, et al. Recent advances in orthopedic polyetheretherketone biomaterials: Material fabrication and biofunction establishment. Smart Materials in Medicine [Internet]. 2022;3:20–36.
Zhang S, Chai Q, Man Z, Tang C, Li Z, Zhang J, et al. Bioinspired nano - painting on orthopedic implants orchestrates periprosthetic anti - infection and osseointegration in a rat model of arthroplasty. Chem Eng J [Internet]. 2022;435(134848):134848.
Chytas D, Malahias M - A, Nikolaou VS. Augmented reality in orthopedics: Current state and future directions. Front Surg [Internet]. 2019;6:38.
Duan X, Wang B, Yang L, Kadakia AR. Applications of 3D printing technolog y in orthopedic treatment. Biomed Res Int [Internet]. 2021;2021:9892456.
Guo Y, Chen C. An orthopedic auxiliary diagnosis system based on image recognition technology. J Healthc Eng [Internet]. 2021;2021:4644392.
Batailler C, Fernandez A, Swan J, Servien E, Haddad FS, Catani F, et al. MAKO CT - based robotic arm - assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc [Internet]. 2021;29(11):3585–98.
Marcela L, García R, Solangel M, Robles R. La revolución tecnológica: lo s ciborgs [Internet]. Edu.co.
Pagani NR, Moverman MA, Puzzitiello RN, Menendez ME, Barnes CL, Kavolus JJ. Online crowdsourcing to explore public perceptions of robotic - assisted orthopedic surgery. J Arthroplasty [Internet]. 2021;36(6):1887-1894.
Bruno G, Daniel M, Fernando MF, Sergio V. Vista de Guía práctica de planificación e impresión 3D en Ortopedia y Traumatología. Servicio de Ortopedia y Traumatología. Hospital Británico de Buenos Aires.
Bautista M, Manrique J, Hozack WJ. Robotics in total knee arthroplasty. J Knee Surg [Internet]. 2019;32(7):600 – 6.
Ejnisman L, Gobbato B, de França Camargo AF, Zancul E. Three - dimensional printing in orthopedics: From the basics to surgical applications. Curr Rev Musculoskelet Med [Internet]. 2021;14(1):1–8.
Pérez - Mañanes R, Calvo - Haro J, Arna l - Burró J, Chana - Rodríguez F, Sanz - Ruiz P, Vaquero - Martín J. Nuestra experiencia con impresión 3D doméstica en Cirugía Ortopédica y Traumatología. Hazlo tú mismo. Rev latinoam cir ortop [Internet]. 2016;1(2):47 – 53.
Ferreyra A, Oll eac E, Masquijo JJ. Vista de Medición intraoperatoria con una aplicación para teléfono inteligente que mejorar la precisión de las osteotomías desrotadoras [Internet].Org.ar.
Matai I, Kaur G, Seyedsalehi A, M cClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/ organ regenerative engineering. Biomaterials [Internet]. 2020;226(119536):119536.
Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot [Internet]. 2020;16(2):e2067.
Nie B, Huo S, Qu X, Guo J, Liu X, Hong Q, et al. Bone infection site targeting nanopartic le - antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact Mater [Internet]. 2022;16:134 – 48.
Li RT, Kling SR, Salata MJ, Cupp SA, Sheehan J, Voos JE. Wearable performance devices in sports medicine. Sports Health [Internet]. 2016 [citado el 2 de abril de 2022];8(1):74–8.
Arroyo - Berezowsky C. Desarrollo de plan de entrenamiento con simulación de artroscopía para residentes de ortopedia. Acta Ortop Mex [Internet]. 2018;32(5):297–302.
Alemayehu DG, Zhang Z, Tahir E, Gateau D, Zhang D - F, Ma X. Preoperative planning using 3D printing technology in orthopedic surgery. Biomed Res Int [Internet]. 2021;2021:7940242.
Bahamonde Muñoz L, García - Huidobro G, Laso Errázuriz JI, Diaz Tocornal D, Alegría Fuentes C, Ritacco LE, et al. Cirugía asistida por computador en tumores óseos. Principios generales. Rev chil ortop traumatol [Internet]. 2016;57(1):20–5.
Wang B, Feng C, Pan J, Zhou S, Sun Z, Shao Y, et al. The effect of 3D printing metal materials on osteoporosis treatment. Biomed Res Int [Internet]. 2021 [citado el 3 de abril de 2022];2021:9972867.
Jiang J. Research on the improved image tracking algorithm of athletes’ cervical health. Rev Brasil Med Esporte [Internet]. 2021;27(5):476–80.
Weidert S, Andress S, Suero E, Becker C, Hartel M, Behle M, et al.3D printing in orthopedic and trauma surgery education and training: Possibilities and fields of application: Möglichkeiten und Anwendungsbereiche. Unfallchirurg [Internet]. 2019; 122(6):444–51.
San - Millán I. Blood biomarkers in sports medicine and performance and the future of metabolomics. Methods Mol Biol [Internet]. 2019;1978:431 – 46.
Koju N, Sikder P, Ren Y, Zhou H, Bhaduri SB. Biomimetic coating technology for orthopedic implants. Curr Opi n Chem Eng [Internet]. 2017;15:49–55.
Cecil J, Gupta A, Pirela - Cruz M, Ramanathan P. An IoMT based cyber training framework for orthopedic surgery using Next Generation Internet technologies. Inform Med Unlocked [Internet]. 2018;12:128–37.
Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, et al. Biofabrication: A guide to technology and terminology. Trends Biotechnol [Internet]. 2018:36(4):384–402.
Son J, Herrera Valenzuela DS, Sacristán Gutiérrez MC, Vargas Castellanos PM. Una Actual ización Sobre Aplicaciones Ortopédicas Usando Tecnologías de Impresión Tridimensional. Rev Ing Biomed [Internet]. 2018 [citado el 3 de abril de 2022];12(23):45–51.
King D, Hume P, Gissane C, Brughelli M, Clark T. The influence of head impact threshold for reporting data in contact and collision sports: Systematic review and original data analysis. Sports Med [Internet]. 2016;46(2):151–69.
Jiang P. Application of 3d analysis technology of vision system image in sports medicine. Rev Brasil Med Esporte [Internet]. 2021;27(4):381–5.
Seshadri DR, Drummond C, Craker J, Rowbottom JR, Voos JE. Wearable devices for sports: New integrated technologies allow coaches, physicians, and trainers to better understand the physical demands of athletes in real time. IEEE Pulse [Internet]. 2017;8(1):38–43.
Vaishya R, Patralekh MK, Vaish A, Agarwal AK, Vijay V. Publication trends and knowledge mapping in 3D printing in orthopaedics. J Clin Orthop Trauma [Internet]. 2018;9(3):194.
Silva IC do N da, Alves AC de J. Identificação das tecnologias assistivas no esporte paralímpico: contribuições e barreiras. Cad Bras Ter Ocup [Internet]. 2020:28(3):917–30.
Kuroda Y, Young M, Shoman H, Punnoose A, Norrish AR, Khanduja V. Advanced rehabilitation technology in orthopaedics - a narrative review. Int Orthop [Internet].2021;45(8):1933–40.
Ejnisman L, Helito CP, Camargo AFDEF, Rocha BA, Baptista AM, Camargo OPDE.Three - dimensional printing in orthopedics: Where we stand and where we are heading. Acta Ortop Bras [Internet].2021;29(4):223–7.
Wong KC. 3D - printed patient - specific applications in orthopedics. Orthop Res Rev [Internet]. 2016;8:57 – 66.
Li C, Xue F, Zhou F. The use of three - dimensional model cons truction of virtual technology in orthopedic treatment. Saudi J Biol Sci [Internet]. 2020;27(4):1169–73.
Freitas Júnior HODE, França LCDEM, Castilho AM, Resende RLCDE, Tavares PCM, Leal JS. Conservative idiopathic scoliosis treatment with brace produced using 3d technology.Coluna/Columna [Internet].2021;20(3):174
Braun BJ, Grimm B, Hanflik AM, Richter PH, Sivananthan S, Yarboro SR, et al. Wearable technology in orthopedic trauma surgery - An AO trauma survey and review of current and future applications. Injury [Internet]. 2022;
Gilbert A, Jones J, Maria S, Carl M. What factors influence patient preference for communication technology consultations in an orthopaedic rehabilitation setting? A qualitative study. Physiotherapy [Internet]. 2022;114:23–4.
Downloads
Published
Versions
- 2025-11-17 (3)
- 2025-11-17 (2)
- 2022-05-05 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Scientific and Eduaction Medical Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribución – No comercial – Compartir igual: Esta licencia permite a otros distribuir, remezclar, retocar, y crear a partir de tu obra de modo no comercial, siempre y cuando te den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.
Attribution-NonCommercial-ShareAlike 4.0 International


