This is an outdated version published on 2025-11-17. Read the most recent version.

El cáncer de pulmón desde la perspectiva del radiólogo, el internista, en conjunto con la inteligencia artificial

Authors

  • María José Muñoz Alvis Fundación Universitaria Sanitas
  • Juan Diego Londoño Cardona Universidad Nacional de Colombia
  • Juan Felipe Guerrero Martínez Universidad Cooperativa de Colombia - Pasto
  • Kellyn Jhoana Toro Maya Corporación Universitaria Remington
  • Jhon Jaime Parra Maca Universidad del Tolima
  • Amelia del Rocio Reyes Universidad Antonio Nariño
  • Marcela Katerine Lasso Gaviria Universidad Central del Ecuador

Keywords:

Radiology, artificial intelligence, lung cancer, lung lesions, diagnostics.

Abstract

Lung cancer is the type of neoplasm with the highest mortality in men and women at present (1), since this is usually diagnosed in advanced stages, so the treatment is usually palliative, not curative (2). Therefore, in recent years, studies have been conducted on the applicability of artificial intelligence (AI), which is “a computer-aided detection model” (3), in conjunction with radiological physicians to improve the early detection of lung lesions suspicious of malignancy in diagnostic images.


In this qualitative systematic review of the literature, the objective is to review how artificial intelligence, and radiologists complement each other in the timely diagnosis of lung cancer, thus improving the prognosis of patients, increasing the sensitivity of the diagnosis by means of images through a specific selection of articles and using instruments such as the CASPe scale.

References

David BJ,Alejandra C,Paulina O.Tamización de cáncer de pulmón.Rev ColombCancerol.2023.

Snoeckx A, Franck C, Silva M, Prokop M, Schaefer-Prokop C, Revel MP. The radiologist’s role in lung cancer screening. Transl Lung Cancer Res. 2021;10:2356–67.

Ueda D, Yamamoto A, Shimazaki A, Walston SL, Matsumoto T, Izumi N, et al. Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs:a retrospective clinical validation study.BMCCancer.2021;21(1).

Abeliuk A, Gutiérrez C.Historia y evolución de la inteligencia artificial.Chile:Editorial;2021.

Rouhiainen L.Inteligencia artificial:101cosas que debes saber hoy sobre nuestro futuro. Alienta; 2018.

Fabre Morales EJ, Cajilima Jimenez VM, Buele Banegas BV, Barreto Acevedo JA, Guerra Godoy EP, Rosero Chancay LA, et al. Fundamentos de Medicina Crítica y Cuidados Intensivos. Juan Cuevas; 2023.

Moore KL,Dailey AF,Agur AMR.MOOREAnatomía con orientaciónclínica.7th ed.Editorial;2013.

Cellina M, Cè M, Irmici G, Ascenti V, Khenkina N, Toto-Brocchi M, et al. Artificial intelligence in lung cancer imaging: unfolding the future. Diagnostics. 2022;12.

Bernstein MH, Atalay MK, Dibble EH, Maxwell AWP, Karam AR, Agarwal S, et al. Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography. Eur Radiol. 2023;33(11):8263–9.

Margerie-Mellon C, Chassagnon G. Artificial intelligence: a critical review of applications for lung nodule and lung cancer. Diagn Interv Imaging. 2023;104:11–7.

Gandhi Z, Gurram P, Amgai B, Lekkala SP, Lokhandwala A, Manne S, et al. Artificial intelligence and lung cancer: impact on improving patient outcomes. Cancers. 2023;15.

Gandomkar Z, Khong PL, Punch A, Lewis S. Using occlusion-based saliency maps to explain an artificial intelligence tool in lung cancer screening: agreement between radiologists, labels, and visual prompts. J Digit Imaging. 2022;35(5):1164–75.

Liu W, Shen N, Zhang L, Wang X, Chen B, Liu Z, et al. Research in the application of artificial intelligence to lung cancer diagnosis. Front Med. 2024;11.

Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22.

Mathew CJ, David AM, Mathew CMJ. Artificial intelligence and its future potential in lung cancer screening. EXCLI J. 2020;19:1552–62.

Nazario Dolz AM, Álvarez Matos D, Castillo Toledo L, Miyares Peña MV, Garbey Nazario A. Algunas especificidades en torno al cáncer de pulmón. Rev Cubana Med Mil [Internet]. 2021 [citado 2024 Ago 4]; Disponible en: http://www.revmedmilitar.sld.cu

Long B, Xiong Z, Habou M. Lung cancer screening, diagnosis, and treatment: The radiologist’s perspective. Meta-Radiology. 2024;2(1):100066.

Díaz Rojas CA, Sierra IJ, Milanés Escobar AS, Velosa Moreno AF, Díaz Cujar AR. Anatomía básica en la radiografía de tórax. Rev Medica Sanitas. 2017;20.

Romero JV, Soto Campos JG. Manual de diagnóstico y terapéutica en neumología. Coordinador José Gregorio Soto Campos. 3a ed. Capítulo 2: Radiología de tórax Scientific & Education Medical Journal,2024;4 (3)-24-37 [Internet].

Liu JA, Yang IY, Tsai EB. Artificial intelligence (AI) for lung nodules, from the AJR special series on AI applications. Am J Roentgenol. 2022;219:703–12.

Chiu HY, Chao HS, Chen YM.Application of artificial intelligence in lung cancer.Cancers. 2022;14

Tam MDBS, Dyer T, Dissez G, Morgan TN, Hughes M, Illes J, et al. Augmenting lung cancer diagnosis on chest radiographs: positioning artificial intelligence to improve radiologist performance. Clin Radiol. 2021;76(8):607–14.

Lococo F, Ghaly G, Chiappetta M, Flamini S, Evangelista J, Bria E, et al. Implementation of artificial intelligence in personalized prognostic assessment of lung cancer: a narrative review. Cancers (Basel). 2024;16(10):1832.

Ewals LJS, van der Wulp K, van den Borne BEEM, Pluyter JR, Jacobs I, Mavroeidis D, et al. The effects of artificial intelligence assistance on the radiologists’ assessment of lung nodules on CT scans: a systematic review. J Clin Med. 2023;12.

Derevianko A, Pizzoli SFM, Pesapane F, Rotili A, Monzani D, Grasso R, et al. The use of artificial intelligence (AI) in the radiology field: what is the state of doctor–patient communication in cancer diagnosis? Cancers. 2023;15.

Pacurari AC, Bhattarai S, Muhammad A, Avram C, Mederle AO, Rosca O, et al. Diagnostic accuracy of machine learning AI architectures in detection and classification of lung cancer: a systematic review. Diagnostics. 2023;13.

Instituto Nacional del Cáncer [Internet]. EE.UU.; [citado 2024 Ago 8].

Ewals LJS, van der Wulp K, van den Borne BEEM, Pluyter JR, Jacobs I, Mavroeidis D, et al. The Effects of Artificial Intelligence Assistance on the Radiologists’ Assessment of Lung Nodules on CT Scans: A Systematic Review. Vol. 12, Journal of Clinical Medicine. Multidisciplinary Digital Publishing Institute (MDPI); 2023.

Derevianko A, Pizzoli SFM, Pesapane F, Rotili A, Monzani D, Grasso R, et al. The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor–Patient Communication in Cancer Diagnosis? Vol. 15, Cancers. MDPI; 2023.

Pacurari AC, Bhattarai S, Muhammad A, Avram C, Mederle AO, Rosca O, et al. Diagnostic Accuracy of Machine Learning AI Architectures in Detection and Classification of Lung Cancer: A Systematic Review. Vol. 13, Diagnostics. Multidisciplinary Digital Publishing Institute (MDPI); 2023.

Instituto nacional del Cancer [Internet] EE UU. [Citado el 8 de agosto de 2024].

Published

2024-08-25 — Updated on 2025-11-17

Versions

How to Cite

Muñoz Alvis, M. J., Londoño Cardona, J. D. ., Guerrero Martínez, J. F., Toro Maya, K. J. ., Parra Maca, J. J., Reyes, A. del R., & Lasso Gaviria, M. K. (2025). El cáncer de pulmón desde la perspectiva del radiólogo, el internista, en conjunto con la inteligencia artificial. Scientific and Educational Medical Journal, 4(3), 24 - 37. Retrieved from https://medicaljournal.com.co/index.php/mj/article/view/132 (Original work published August 25, 2024)

Most read articles by the same author(s)